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Abstract

IMPORTANCE There is a well-established negative association of educational attainment (EA) and
other traits related to cognitive ability with posttraumatic stress disorder (PTSD), but the underlying
mechanisms are poorly understood.

OBJECTIVES To investigate the association of PTSD with traits related to EA.

DESIGN, SETTING, AND PARTICIPANTS Genetic correlation, polygenic risk scoring, and mendelian
randomization (MR) were conducted including 23 185 individuals with PTSD and 151 309 control
participants from the Psychiatric Genomics Consortium for PTSD and up to 1 131 881 individuals
assessed for EA and related traits from UK Biobank, 23andMe, and the Social Science Genetic
Association Consortium. Data were analyzed from July 3 through November 19, 2018.

MAIN OUTCOMES AND MEASURES Genetic correlation obtained from linkage disequilibrium score
regression, phenotypic variance explained by polygenic risk scores, and association estimates
from MR.

RESULTS Summary association data from multiple genome-wide association studies were available
for a total of 1 180 352 participants (634 391 [53.7%] women). Posttraumatic stress disorder showed
negative genetic correlations with EA (rg = −0.26; SE = 0.05; P = 4.60 × 10−8). Mendelian
randomization analysis, conducting considering a random-effects inverse-variance weighted
method, indicated that EA has a negative association with PTSD (β = −0.23; 95% CI, −0.07 to −0.39;
P = .004). Investigating potential mediators of the EA-PTSD association, propensity for trauma
exposure and risk-taking behaviors were observed as risk factors for PTSD independent of EA
(trauma exposure: β = 0.37; 95% CI, 0.19 to 0.52; P = 2.57 × 10−5; risk-taking: β = 0.76; 95% CI, 0.38
to 1.13; P = 1.13 × 10−4), while income may mediate the association of EA with PSTD (MR income:
β = −0.18; 95% CI, −0.29 to −0.07; P = .001; MR EA: β = −0.23; 95% CI, −0.39 to −0.07; P = .004;
multivariable MR income: β = −0.32; 95% CI, −0.57 to 0.07; P = .02; multivariable MR EA: β = −0.04;
95% CI, −0.29 to 0.21; SE, 0.13; P = .79).

CONCLUSIONS AND RELEVANCE Large-scale genomic data sets add further evidence to the
negative association of EA with PTSD, also supporting the role of economic status as a mediator in
the association observed.
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Introduction

Posttraumatic stress disorder (PTSD) is a psychological condition that occurs in some individuals
after exposure to a major traumatic event. Prospective studies have suggested that many variables
previously considered outcomes of trauma are likely to be pretrauma risk factors.1 Among these
complex associations, that of PTSD with cognitive ability and educational attainment (EA; ie, the
number of years of schooling that individuals complete) is among the most puzzling.

While there is a robust epidemiologic literature on the negative association of PTSD with
cognitive ability and EA,2-5 the underlying mechanisms remain unclear. Reverse causation (ie, when
an outcome precedes and causes the exposure)6-8 is a key obstacle to disentangling the direction of
the mechanisms that associate these 2 phenotypes.

Adequately powered genome-wide association studies (GWASs) are able to dissect the
predisposition to complex traits. This requires extremely large sample sizes to detect the polygenic
architecture of complex traits, overcoming their heterogeneity to have sufficient power to find risk
loci of very small effect.9 By combining such small-effect loci, it is possible to build genetic
instruments that can be used to investigate complex epidemiological associations, such as the
underlying mechanisms connecting PTSD, traits related to EA, and the potential mediation of other
pretrauma risk factors. In particular, genetic information can remove the bias of reverse causation
from analysis of the association of PTSD with cognition and education. Genetic variants are allocated
at conception and do not change throughout life, and they can be used to define reliable genetic
instruments that can be applied in a mendelian randomization (MR) analysis.10-14 The basic principle
in MR is that an instrumental variable based on genetic variants associated with a phenotype can be
used to represent, or mirror, the disease risk associated with that phenotype without the presence of
possible environmental confounders.15

Previous large-scale GWASs conducted by the Social Science Genetic Association Consortium
(SSGAC)16-19 investigated traits related to EA, identifying a number of loci and biological pathways
regulating brain mechanisms at the basis of human cognitive ability. A 2018 genome-wide analysis of
multiple brain disorders and phenotypes20 showed pervasive shared heritability of these traits with
EA and related traits. Based on the GWAS regarding PTSD newly generated by the Psychiatric
Genomics Consortium (PGC),21 we applied multiple statistical methods to large-scale genomic data
sets to investigate the mechanisms involved in the association of PTSD with traits related to EA and
potential pretrauma risk factors.

Methods

This study was conducted using summary association data generated by previous studies. Owing to
the use of previously collected, deidentified, aggregated data, this study did not require institutional
review board approval. Ethical approval had been obtained in all original studies.16,21 Summary data
were available for a total of 1 180 352 participants. Multiple statistical methods were applied to these
data sets to investigate the association of PTSD with EA and related traits. A schematic workflow
summarizing the analyses conducted is reported in eFigure 1 in the Supplement. These analyses were
conducted from July 3 through November 19, 2018. The study was reported in accordance to the
Strengthening the Reporting of Genetic Association Studies (STREGA) reporting guideline.22

Cohorts Investigated
Genome-wide information regarding PTSD was derived from the freeze-2 analysis conducted by the
Psychiatric Genomics Consortium Posttraumatic Stress Disorder (PGC-PTSD) Working Group.21 In
this analysis, lifetime and/or current PTSD status was assessed using various instruments and
different versions of the Diagnostic and Statistical Manual of Mental Disorders (Third Edition Revised,
Fourth Edition, and Fifth Edition). We focused on the data generated from the analysis of individuals
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of European descent (23 185 individuals with PTSD; 151 309 control participants) because the
genome-wide analyses of traits associated with EA were conducted only on this ancestry group.

Genome-wide information regarding traits related to EA were derived from the GWAS meta-
analysis by the SSGAC,16 which investigated EA as the primary phenotype in a total of 1 131 881
individuals (EA1M). Additional information about the definition of the EA phenotype is available in
the eAppendix in the Supplement. In the same SSGAC study,16 3 additional phenotypes were
investigated. Of these, 2 were analyzed exclusively among research participants of the personal
genomics company 23andMe. Participants were asked to rate their mathematical ability (MA;
n = 564 698; very poor, 0; poor, 1; about average, 2; good, 3; excellent, 4) and to list the most
advanced math course they had successfully completed (MC; n = 430 445; prealgebra, 1; algebra, 2;
geometry, 3; trigonometry, 4; precalculus, 5; calculus, 6; vector calculus, 7; >vector calculus, 8). The
third phenotype investigated, cognitive performance, was assessed in 257 828 participants from the
Cognitive Genomics Consortium study and the UK Biobank.16 For the data sets including participants
from 23andMe, we had access only to summary association data of the top 10 000 variants.
Accordingly, the data sets derived from 23andMe were not used for the reverse analysis (ie,
estimating the association of PTSD with traits related to EA).

A summary of the data sets tested is reported in the Table. Since UK Biobank participants were
included in both PGC-PTSD and SSGAC studies, some analyses were conducted on a PGC-PTSD
subsample that excluded the UK Biobank cohort (PGC-PTSD freeze-1.5 data set: 12 823 individuals
with PTSD; 35 648 control participants). Excluding UK Biobank, negligible overlap is present
between PGC-PTSD and SSGAC cohorts (eAppendix in the Supplement).

We also used data from the UK Biobank to investigate the possible mediation of PTSD risk
factors in their associations with traits related to EA. Self-reported risk-taking behaviors were
assessed with the question, “Would you describe yourself as someone who takes risks?” (UK Biobank
data field 2040). Income was assessed with, “Average total household income before tax” (UK
Biobank data field 738). We also considered traumatic events assessed in the UK Biobank (eTable 1 in
the Supplement). Genome-wide information regarding these traits was derived from GWAS summary
association data generated from the UK Biobank.23

Genetic Correlation and Definition of the Genetic Instruments
Linkage disequilibrium (LD) score regression was used to estimate the genetic correlation among the
traits investigated.24 Since sample overlap between the GWAS tested does not affect the results
obtained from this method,24 we were able to calculate pairwise genetic correlations, including those
between data sets that had overlapping information with the UK Biobank participants.

Table. Traits Tested With Corresponding Information Regarding Sample Size, Data Available,
and Cohorts Included

Trait Abbreviation Sample Size Cohort
Summary
Statistics

Posttraumatic stress disorder PTSD freeze-1.5 12 823 with PTSD;
35 648 controls

PGC Full

Posttraumatic stress disorder PTSD freeze-2 23 185 with PTSD;
151 309 controls

PGC, UKB Full

Cognitive performance CP 257 828 SSGAC, UKB Full

Educational attainment EA 766 345 SSGAC, UKB Full

Educational attainment EA1M 1 131 881 SSGAC, UKB,
23andMe

Top 10 000

Self-reported math ability MA 564 692 23andMe Top 10 000

Most advanced math course
completed

MC 430 439 23andMe Top 10 000

Risk-taking behaviors RT 348 549 UKB Full

Income Income 311 028 UKB Full

Physically abused by family as a
child

PAC 117 838 UKB Full

Abbreviations: PGC, Psychiatric Genomics
Consortium; PTSD, posttraumatic stress disorder;
SSGAC, Social Science Genetic Association
Consortium; UKB, UK Biobank.
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The polygenic risk scores (PRSs) were calculated after using P value–informed clumping with an
LD cutoff of R2 = 0.001 within a 10 000-kilobase window, excluding the major histocompatibility
complex region of the genome because of its complex LD structure and including only variants with
a minor allele frequency less than 1%. The European samples from the 1000 Genomes Project were
used as the LD reference panel.25 The PRS analysis was conducted on the basis of the GWAS
summary association data using the gtx R package incorporated in PRSice software.26 For each PRS
analysis, we calculated an approximate estimate of the explained variance from a multivariate
regression model.27 For the traits related to EA, we considered a genome-wide significance threshold
(P < 5.00 × 10−8). For other traits (ie, PTSD, income, risk-taking behaviors, and trauma exposure),
owing to the limited power to detect a large number of genome-wide significant loci, we evaluated
multiple P value thresholds (PT; PT = 5.00 × 10−8, 10−7, 10−6, 10−5, 10−4, .001, .05, .1, .3, .5, and PT < 1)
to increase the variance explained by the genetic instruments. To account for the multiple PTs tested,
we considered P < .005 as the significance threshold in the PRS analysis. Tests of statistical
significance were 2-tailed. The results of the PRS analyses were used to define the genetic
instruments for each pairwise comparison to be investigated further via the MR approach.

Mendelian Randomization
To assess the association among the traits tested, we used GWAS summary association data to
conduct 2-sample MR analyses.28 As mentioned earlier, genetic instruments were based on the
results obtained in the PRS analysis. Since different MR methods have different sensitivities to
different potential issues, accommodate different scenarios, and vary in their statistical efficiency,11

we considered a range of MR methods. The primary analysis was conducted considering a random-
effects inverse-variance weighted (IVW) method.29 The secondary MR methods included MR
Egger,30 simple mode,31 weighted median,32 and weighted mode.31 These MR analyses were
conducted using the TwoSampleMR R package.29 Additionally, owing to the fact that some traits
showed a limited number of associated genome-wide significant variants, genetic instruments
associated with PTSD, income, risk-taking behaviors, and trauma exposure were based on suggestive
PTs similar to previous MR studies.33-35 We verified these IVW estimates using the MR–Robust
Adjusted Profile Score (MR-RAPS) approach, which is a method designed to identify and estimate
confounded associations using weak genetic instrument variables.36,37 We conducted multiple
sensitivity analyses with respect to the MR tests conducted to exclude possible biases (horizontal
pleiotropy, ie, the variants included in the genetic instrument having an effect on disease outside
their effects on the exposure in MR38,39) under different scenarios in the MR estimates. These
included the IVW heterogeneity test,29 the MR-Egger intercept,30 the MR-RAPS overdispersion
test,36 and the MR–Pleiotropy Residual Sum and Outlier (MR-PRESSO) global test.40 Finally, a leave-
1-out analysis was conducted to identify potential outliers among the variants included in the genetic
instruments tested. The MR results without evidence of horizontal pleiotropy and heterogeneity
were entered in the multivariable MR (MVMR) analysis41 conducted using the IVW approach. This
method permits evaluation of the independent association of each risk factor with the outcome,
similar to the simultaneous assessment of several treatments in a factorial randomized trial.41

Comparing the utility of MR with MVMR methods, MR estimates the total association of the
exposure with the outcome, whereas MVMR estimates the direct association of each exposure with
the outcome.42 In this scenario, MVMR is not a form of mediation analysis but instead estimates the
direct association of the exposure with the outcome that does not act via the mediator.42 The MVMR
analysis was conducted using the MendelianRandomization R package.43

Enrichment Analysis
We tested for functional differences between the traits of interest by means of enrichment analyses
based on tissue-specific and cell type–specific gene expression reference panels.44-48 These analyses
were conducted using the MAGMA tool49 implemented in FUMA.50
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Results

Data were available for a total of 1 180 352 participants (634 391 [53.7%] women). Information
regarding PTSD was available for 23 185 individuals with PTSD and 151 309 control participants
(174 494 individuals; 15%) from the PGC-PSTD Working Group and regarding EA for 1 131 881
individuals (96%) from the total sample.

Genetic Correlation and Polygenic Risk Scoring
Our study investigated multiple data sets generated from different cohorts and with different data
availability (Table). Using LD score regression and data sets with full GWAS summary association
data, we observed a negative genetic correlation of PTSD (freeze-2) with EA (rg = −0.26; SE = 0.05;
P = 4.60 × 10−8) and cognitive performance (rg = −0.16; SE = 0.05; P = 9.00 × 10−4). The PRS
analyses were conducted using PTSD as the target and traits related to EA as the training data set,
considering only genome-wide significant variants (P < 5.00 × 10−8; eFigure 2 in the Supplement).
This analysis was conducted excluding those pairwise comparisons that would have included data
sets with the UK Biobank as an overlapping cohort. The most significant PRS association was
observed between MC genome-wide significant PRS with respect to PGC-PTSD freeze-2 data
(R2 = 0.04%; SE = 0.0001; P = 1.13 × 10−8). The same PTSD data set showed a weaker association
with MA PRS (R2 = 0.01%; SE =0.00003; P = .004). Significant associations were also observed with
respect to PGC-PTSD freeze-1.5 outcome for EA (R2 = 0.03%; SE = 0.0001; P = 6.16 × 10−4), MC PRS
(R2 = 0.03%; SE = 0.0001; P = 7.86 × 10−4), and EA1M PRS (R2 = 0.03%; SE = 0.0001; P = .002).
The phenotypic variance explained by the significant PRS is in line with the cross-phenotype
association expected between 2 complex traits with a moderate genetic correlation. No association
of the PRS of cognitive performance and MA was observed with respect to PGC-PTSD freeze-1.5 data
set (cognitive performance: R2 < 0.01%; P = .15; MA: R2 < 0.01%; P = .11), and accordingly, these
phenotypes were not investigated further. We tested the reverse direction (ie, PTSD as base and
traits related to EA as target). Owing to the limited number of genome-wide significant loci in the
PGC-PTSD analysis, the PRS analysis was conducted considering multiple-association PTs to include
at least 10 LD-independent variants in each PRS tested (eFigure 3 in the Supplement). We observed a
nominally significant association between the PGC-PTSD freeze-1.5 PRS (PT = 10−5) and EA
(R2 = 0.0004%; SE = 0.000002; P = .04) that would not survive a Bonferroni correction for the
number of PTs tested.

Mendelian Randomization
Based on the PRS results, we conducted MR tests using 3 genetic instruments based on genome-
wide significant variants. These included MC, EA, and EA1M, tested with respect to PGC-PTSD data
sets (freeze-2 and/or freeze-1.5, depending on UK Biobank overlap). The reverse MR test was
conducted on the basis of PGC-PTSD freeze-1.5 data (PT = 5.00 × 10−5) with respect to the EA data
set. It was not possible to conduct reverse analyses for the MC and EA1M data sets because we did
not have access to the full GWAS summary association data for these studies. A significant
association was found between MC and PGC-PTSD freeze-2 data (IVW: β = −0.41; 95% CI, −0.59 to
−0.23; P = 3.46 × 10−6). Concordant results were observed when considering other MR methods
(Figure 1). The significance was replicated with the MR-RAPS approach (β = −0.42; 95% CI, −0.60 to
−0.24; SE = 0.09; P = 3.70 × 10−6), and no outliers were identified by the leave-1-out analysis
(eFigure 4 in the Supplement). However, we observed the presence of possible bias in this result
owing to heterogeneity and/or pleiotropy (IVW heterogeneity test: Q = 267.4; df = 192;
P = 2.61 × 10−4; MR-RAPS overdispersion test: estimated pleiotropy variance, 0.0001; P = .007;
MR-PRESSO global test: observed residual sum of squares, 281.4; P = 5.00 × 10−4). Thus, we
identified the outliers on the basis of the MR-RAPS standardized residuals (−1.96 > z > 1.96) and
verified their contributions on the results of the IVW heterogeneity test (eFigure 5 in the
Supplement). Removing the outliers from the MC genetic instrument, we confirmed the association
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of MC with PTSD in the freeze-2 data set (IVW: β = −0.39; 95% CI, −0.57 to 0.21; P = 4.25 × 10−7;
MR-RAPS: β = −0.39; 95% CI, −0.55 to −0.23; P = 1.06 × 10−6) and the lack of evidence of possible
confounders from the sensitivity analyses (eTable 2 and eFigure 6 in the Supplement). We verified
the reliability of this MR finding considering PGC-PTSD freeze-1.5 data as the outcome and MC, EA,
and EA1M as exposures. We observed comparable MR results across the genetic instruments
generated from different cohorts and the 2 versions of the PGC-PTSD data sets (Figure 2; eFigure 7
in the Supplement). However, consistent with the lower power of PGC-PTSD freeze-1.5 data, we
observed a reduction of the significance (MC for PGC-PTSD freeze-2 data set: IVW: β = −0.41; 95% CI,
−0.59 to −0.23; P = 3.46 × 10−6; MC for PGC-PTSD freeze-1.5 data set: IVW: β = −0.22; 95% CI, −0.38
to −0.06; P = .004; EA for PGC-PTSD freeze-1.5 data set: β = −0.23; 95% CI, −0.39 to −0.07;
P = .004). We verified that no bias in the MR results was present owing to palindromic variants with
an ambiguous allele frequency51 and to the presence of assortative mating in EA52 (eTable 3 and
eAppendix in the Supplement).

To support further that MC and EA are associated with the same mechanism, we conducted a
MVMR analysis, which showed that these 2 associations are not independent from each other
(eFigure 8 in the Supplement), and their relationship with PTSD should be shared. Accordingly, we
used EA as a proxy of MC in the subsequent analyses because we had full access only to the former
data set.

We tested the reverse association, considering PTSD as the risk factor (ie, exposure) and EA as
the outcome of the MR analysis. We included PTSD genetic instrument variants with a PTSD GWAS

Figure 1. Single-Nucleotide Polymorphism (SNP) Repeated Effects on Posttraummatic Stress Disorder (PTSD)
and Most Advanced Math Course Completed (MC)
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Figure 2. Estimated Associations Considering Different Traits Associated With Educational Attainment (EA)
and 2 Versions of the Posttraumatic Stress Disorder (PTSD) Data Set
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P = 10−5 considering the PGC-PTSD freeze-1.5 data. No significant association was observed (IVW:
β = 0.006; 95% CI, −0.002 to 0.014; P = .16; MR-RAPS: β = 0.0006; 95% CI, −0.007 to 0.008;
P = .10). To further confirm the absence of reverse association, we conducted an MR analysis
including all LD-independent variants in the genetic instrument and applied the MR-RAPS method
only. No directional association of PTSD with EA was observed (β = −0.0006; 95% CI, −0.002 to
0.002; P = .55), but we confirmed a directional association of EA with PSTD (β = −0.27; 95% CI,
−0.38 to −0.15; P = 8.06 × 10−6). These outcomes were stable across different adjustments of the
MR-RAPS method (eTable 4 in the Supplement).

Multivariable MR Analysis
To further investigate the association of EA with PTSD, we tested 3 potential mediators (risk-taking
behaviors, income, and trauma exposure) in an MVMR analysis. Before entering these potential
mediators in the MVMR analysis, we verified the reliability of each genetic instrument by conducting
a standard 2-sample MR and verifying the evidence of bias owing to heterogeneity and horizontal
pleiotropy. Because of the limited number of genome-wide significant variants with respect to these
traits, we conducted a PRS considering multiple PTs as described earlier, to determine the best
genetic instrument for each trait with respect to the PGC-PTSD freeze-1.5 data set (eFigure 9 in the
Supplement). The best results were observed for PT = 5.00 × 10−4 with risk-taking behaviors
(R2 = 0.06%; SE = 0.0001; P = 1.53 × 10−5) and PT = .001 for income (R2 = 0.09%; SE = 0.0002;
P = 5.67 × 10−8). The MR analysis based on these genetic instruments confirmed that PTSD is
associated with the genetic instruments related to risk-taking behaviors (IVW: β = 0.76; 95% CI, 0.38
to 1.13; P = 1.13 × 10−4; MR-RAPS: β = 0.76; 95% CI, 0.32 to 1.21; P = 6.75 × 10−4), and income (IVW:
β = −0.18; 95% CI, −0.29 to −0.07; P = .001; MR-RAPS: β = −0.19; 95% CI, −0.31 to −0.07; P = .003).
No evidence of heterogeneity or pleiotropy was observed in either analysis (eTable 5 in the
Supplement).

Multiple traumatic events were assessed in the UK Biobank (eTable 1 in the Supplement), and
they showed genetic correlation with each other (eTable 6 in the Supplement). We selected 4
traumatic experiences that showed a similar pattern of genetic correlation with respect to PTSD, EA,
and the other 2 potential mediators (eFigure 10 in the Supplement). The most informative PRS across
the 4 traumatic experiences tested was observed at PT = .001 (eFigure 11 in the Supplement). Then,
we conducted an MR analysis testing different trauma-related genetic instruments with respect to
PGC-PTSD freeze-1.5 data. We observed significant associations not affected by confounders
(eTable 7 in the Supplement) for 3 traumatic experiences and, conducting an MVMR analysis,
identified “physically abused by family as a child” (UK Biobank data field 20488) as the most
informative genetic instrument for trauma exposure (MR analysis: β = 0.36; 95% CI, 0.19 to 0.52;
P = 2.57 × 10−5; MVMR analysis: β = 0.26; 95% CI, −0.51 to 0.01; SE = 0.129; P = .04) (eFigure 12 in
the Supplement).

In the MVMR analysis, we observed that trauma exposure and risk-taking behaviors were
independent risk factors for PTSD (ie, the results obtained from the MR IVW and MVMR IVW analyses
were both significant; Figures 3A, B, and C). Conversely, the genetic instrument related to income
potentially mediates the association of the EA genetic instrument with PTSD (Figure 3A and D).
Educational attainment has a significant association with respect to PTSD (β = −0.23; 95% CI, −0.39
to −0.07; P = .004), but when adjusted by income, this result is null (β = −0.04; 95% CI −0.30 to
0.21; P = .79). Conversely, the association of income with PTSD was still significant when adjusted by
EA (unadjusted: β = −0.18; 95% CI, −0.30 to −0.06; P = .001; adjusted: β = −0.32; 95% CI, −0.57 to
−0.07; SE = 0.13; P = .02).

Enrichment Analysis
Although there is a large genetic correlation between EA and income (r = 0.81; P < 6.10 × 10−308),
income is significantly more correlated with PTSD than EA (EA: r = −0.26; SE = 0.05;
P = 4.60 × 10−8; income: r = −0.45; SE = 0.06; P = 9.98 × 10−16; z for EA × income = 2.65; P for
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EA × income = 0.008). Both traits are enriched for the transcriptomic profile of multiple brain
tissues (eg, cerebellar hemisphere, EA: β = 0.01; 95% CI, 0.07-0.12; P = 1.49 × 10−16; income:
β = 0.04; 95% CI, 0.02-0.06; P = 3.83 × 10−7) and neuronal cell types (eg, γ-aminobutyric acid
[GABA]–ergic neurons, EA: β = 0.14; 95% CI, 0.07-0.21; P = 8.96 × 10−5; income: β = 0.05; 95% CI,
0.01-0.09; P = .02), but the enrichment signals of the EA GWAS are more significant than the ones
observed in the income GWAS (Figure 4; eTable 8 in the Supplement), showing that EA data are
more informative for the brain processes expected to be associated with cognition than income data.

Figure 3. Multivariable Mendelian Randomization Analysis Considering Associations of Educational Attainment (EA), Posttraumatic Stress Disorder (PTSD),
and Other Traits
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Discussion

Our analysis was based mainly on data from investigations of traits associated with EA. Previous
studies have demonstrated that genetic results deriving from them are mainly informative regarding
the brain mechanisms at the basis of human cognitive ability.16-19 Our analysis made use of these data
to show that traits associated with cognitive ability have an association with PTSD. This result was
consistent across traits in independent cohorts, even when adjusting the analysis for assortative
mating present in these traits.52 In line with an association direction from cognition to PTSD, no
evidence of reverse association was observed.

Although our findings are consistent with a specific direction, we had to evaluate whether other
factors could be responsible for this association. Accordingly, we tested 3 phenotypes of known
relevance for PTSD: propensity to trauma exposure,53 risk-taking behaviors,54 and economic
status.55 Our MVMR analysis clearly showed that, while propensity to trauma exposure and risk-
taking behaviors are independent PTSD risk factors, the directional association of EA with PTSD is
associated with economic status, which is the driving force of the association. Educational
attainment and income showed a large genetic overlap, and while PTSD showed a higher correlation
with income than with EA, our investigation showed that EA is more informative for the brain
mechanisms that are considered responsible for a predisposition to high cognitive ability. Since
income appears to be responsible for the EA-PTSD association, we hypothesize that this mechanism
is not related to cognitive ability but rather to other risk factors. This is also supported by our finding
that, unlike EA and MC (traits that should be more associated with socioeconomic status), cognitive
performance and MA showed a lower genetic association with PTSD. A 2018 genome-wide
investigation of social stratification56 showed that cognition and socioeconomic status are correlated
with a wide range of factors, including personality, psychological traits, mental health, substance use,
physical health, reproductive behaviors, and anthropometric traits. Additionally, income may reflect
indirect effects, such as those induced by genetic nurture on EA.57,58 Socioeconomic factors might
also be associated with the outcome of PTSD, given that individuals with poorer outcomes are more
likely to be included in studies of prevalent cases.

To our knowledge, this study represents the first MR analysis to investigate the underlying
mechanisms linking cognitive ability to PTSD. It is based on the largest genome-wide data sets for
these traits available at this time. The EA-PTSD association observed is in line with several
prospective studies,1 and the association of socioeconomic status with PTSD is also a well-
established risk factor reported in several observational studies.55,59 Compared with these previous
investigations, the current analyses are based on a much larger population (>1 million individuals)
than would ever be feasible for a traditional experimental design (which would include randomized
interventions and measurements of outcomes) and without the ethical quandaries that would
accompany such randomizations. Also, these results are not expected to be affected by reverse
association because of the genetic information used. The findings show that income may explain the
EA-PTSD association, suggesting that brain mechanisms related to cognitive ability are not directly
responsible for the association observed.

Limitations
Our study has limitations. The present study is based on genetic information generated from the
investigation of heterogeneous, clinically defined phenotypes such as PTSD. We tested this complex
trait with respect to a series of complex, socially contextualized phenotypes, including EA, income,
risk-taking behaviors, and predisposition to traumatic events. Although we used appropriate
statistical methods and conducted the analyses across multiple independent cohorts, findings
related to genetic data associated with these phenotypes need to be interpreted cautiously.58,60 The
results of our current analysis are also limited by the statistical power of the PTSD GWAS data sets,
which may have limited our ability to observe the reverse association of PTSD with EA. However, we
used multiple methods that showed significant associations when applied to similarly powered
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GWAS data sets. Another potential limitation is owing to the pervasive presence of horizontal
pleiotropy among complex traits.39 We applied multiple sensitivity analyses that accounted for
different scenarios related to the potential confounding effect of horizontal pleiotropy and
heterogeneity in the genetic instruments applied in our MR analyses. Although no evidence of bias
was observed by the methods used, our current findings could be affected by an unaccounted
confounder.

Conclusions

This study provides new evidence to elucidate the association of EA with PTSD, pointing toward risk
factors associated with economic status rather than brain pathways. These findings have relevant
implications with respect to our understanding of the pretrauma risk factors associated with
increased vulnerability to PTSD. Additionally, MR analysis should consider testing the independence
of multiple correlated risk factors with respect to the outcome of interest. This is particularly relevant
when investigating the potential role of EA in human phenotypes and disorders.
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